
Setting up a flexible framework to add MPPI
support for different dynamics models

Undergraduate Summer Student Final Presentation
Rodrigue de Schaetzen

August 17th, 2020

Outline

ØProblem statement
ØProposed Approach
ØRelated Work
ØML Pipeline
ØVision System
ØWhat still needs to be done
ØConclusion

2

Problem Statement

• The AutoRally platform, an autonomous vehicle testbed for high-
speed aggressive driving, was designed with a single vehicle model in
mind
• No standard approach available to make AutoRally platform

compatible with other robots (e.g. wheelchair, jetracer)
• Focus is on the AutoRally control algorithm: MPPI

3
Picture taken from https://autorally.github.io/

https://autorally.github.io/

Model Predictive Path Integral (MPPI)

• Novel approach for
autonomous vehicle control
• Based on stochastic sampling

of trajectories
• Can handle complex non-

linear dynamics and cost
functions
• Requires a model of the

system dynamics (i.e. what is
the vehicle’s future state if I
apply 50% throttle and 20%
steering)

4

MPPI description and screenshot taken from https://autorally.github.io/

https://autorally.github.io/

Proposed Approach

• Build a robust and scalable framework for generating models of
different vehicle dynamics in order to add MPPI support for additional
robots

1. ML pipeline for training a neural network dynamics model
2. Overhead vision system to collect ground truth data

• Already provided is the neural network dynamics model of the
AutoRally vehicle – this will serve as a benchmark

5

Related Work

• Approach is built off the ICRA 2017 paper “Information Theoretic
MPC for Model-Based Reinforcement Learning”
• Experiment used the AutoRally vehicle
• Used neural network with only 2 hidden layers each with 32 neurons and

Tanh non-linearities as the activation functions
• Trained on 30 minutes of human-controlled driving around an elliptical track
• Fused sensor data (GPS, IMU) to get truth pose estimates

• No publicly available code related to model training or testing

6

Neural Network Dynamics Model

• Neural network architecture [6, 32, 32, 4]

7

Tanh(x)

Input layer

General form:
[state variables,
control variables]

Longitudinal velocity
Lateral velocity

Roll

Steering
Throttle

Heading rate

Hidden Layers with
Tanh non-linearity

32
 n

od
es

General form:
[layer 1, Tanh, …,
layer n, Tanh]

32
 n

od
es

Ta
nh

Ta
nh

Output layer

General form:
d/dt (state variables)

d/dt(Longitudinal velocity)
d/dt(Lateral velocity)

d/dt(Roll)

d/dt(Heading rate)

ML pipeline

• Built a highly configurable end-to-end ML pipeline

8

Data Preprocessing
• Resample state and control data
• Compute state derivative data
• Convert quaternions to Euler

angles

Tools: scipy, numpy, pandas

Train Model
• Train feedforward neural

network
• Save to disk model with lowest

validation loss

Tools: scikit-learn, pyTorch

Test/Evaluate Model
• Generate future states by

feeding current state + controls
into the model and using model
output to update state

• Compare predicted states to
truth states (multi-step error)

• Compute instantaneous errors

Generating future states

Network

Test Dataset

state data
at T=0

control data
at T=t

d/dt (state data)
at T=t

time step ++
state data

at T=t

Preliminary Results
• Tested pipeline with gazebo simulation data
• Ran MPPI and recorded the following data:

• Train dataset:
• 15 minutes
• Elliptical and CCRF tracks
• Clockwise and counterclockwise
• 5 m/s and 7 m/s target speed

• Test dataset:
• 2 minutes
• Elliptical track
• Clockwise and counterclockwise
• 6 m/s target speed

• Tested original AutoRally neural network as well
as some deeper and wider networks

• Ran MPPI with trained model

9

Preliminary Results

• Test results of a trained model with
layers [6, 32, 32, 4]
• Plot shows multi-step prediction error
• Errors from propagating dynamics for

38 different batches

10

2D trajectory for batch 27

Preliminary Results

11

Model name Network Layers Mean absolute multi-step errors

X position (m) Y position (m) Yaw (rad)

AutoRally_nnet
(benchmark)

6, 32, 32, 4 2.55 m
(σ=2.15)

2.33 m
(σ=1.66)

0.37 rad
(σ=0.38)

Same-layers
(previous slide)

6, 32, 32, 4 2.94 m
(σ=3.16)

2.98 m
(σ=2.34)

0.93 rad
(σ=0.69)

Wider-deeper 6, 64, 64, 64, 64, 4 1.99 m
(σ=2.13)

1.62 m
(σ=1.24)

0.57 rad
(σ=0.55)

Vision system for truth state data

• Need truth data for robots running in the real world
• SSL (Small Size League) Vision can detect robots using overhead cameras

• Robots are detected via fiducial markers
• Global x and y coordinates, and robot orientation are computed

• SSL Vision state data can feed to an algorithm such as a Kalman filter to output
tracking information (i.e. linear and angular velocity)

12

Firewire Algorithm e.g.
Kalman Filter

Protobuf Message
with position dataVision Software

(SSL Vision)Camera

Robot

Tracking data

Preliminary Results

13

Difference from mean (mm for x,y, and rad for orientation)

Histogram of robot position measurements with mean centered at 0
Measurement count=1000

Still need to do

• Further quantify sensor noise
• Test vision system on small robot or find larger space
• Use ML pipeline to train model with real world vehicle data
• Modify AutoRally MPPI to be more flexible and configurable to handle

a wider range of robots (e.g. omni-drive robots)

14

Conclusion

• Problem statement:
• AutoRally platform and MPPI officially only support AutoRally vehicle

• Accomplished so far:
• Built a scalable ML pipeline to generate a neural network dynamics model
• Trained on AutoRally gazebo simulation world to validate pipeline
• Configured an overhead vision system to collect real vehicle truth state data

• What still needs to be done:
• Test pipeline with real robot data!
• Remove coupling to AutoRally vehicle in MPPI and AutoRally platform

15

Links to project files

• Forked AutoRally GitHub repository

•ML pipeline directory

• SSL Vision directory

16

https://github.com/rdesc/autorally
https://github.com/rdesc/autorally/tree/rdesc-melodic-devel/autorally_control/src/path_integral/scripts/ml_pipeline
https://github.com/rdesc/autorally/tree/rdesc-melodic-devel/autorally_control/src/path_integral/scripts/ssl_vision

