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Problem Statement

• The AutoRally platform, an autonomous vehicle testbed for high-
speed aggressive driving, was designed with a single vehicle model in 
mind
• No standard approach available to make AutoRally platform 

compatible with other robots (e.g. wheelchair, jetracer)
• Focus is on the AutoRally control algorithm: MPPI
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Picture taken from https://autorally.github.io/

https://autorally.github.io/


Model Predictive Path Integral (MPPI)

• Novel approach for 
autonomous vehicle control
• Based on stochastic sampling 

of trajectories
• Can handle complex non-

linear dynamics and cost 
functions
• Requires a model of the 

system dynamics (i.e. what is 
the vehicle’s future state if I 
apply 50% throttle and 20% 
steering)
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MPPI description and screenshot taken from https://autorally.github.io/

https://autorally.github.io/


Proposed Approach

• Build a robust and scalable framework for generating models of 
different vehicle dynamics in order to add MPPI support for additional 
robots

1. ML pipeline for training a neural network dynamics model
2. Overhead vision system to collect ground truth data

• Already provided is the neural network dynamics model of the 
AutoRally vehicle – this will serve as a benchmark
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Related Work

• Approach is built off the ICRA 2017 paper “Information Theoretic 
MPC for Model-Based Reinforcement Learning” 
• Experiment used the AutoRally vehicle
• Used neural network with only 2 hidden layers each with 32 neurons and 

Tanh non-linearities as the activation functions
• Trained on 30 minutes of human-controlled driving around an elliptical track
• Fused sensor data (GPS, IMU) to get truth pose estimates

• No publicly available code related to model training or testing
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Neural Network Dynamics Model

• Neural network architecture [6, 32, 32, 4]
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ML pipeline

• Built a highly configurable end-to-end ML pipeline
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Data Preprocessing
• Resample state and control data
• Compute state derivative data
• Convert quaternions to Euler 

angles

Tools: scipy, numpy, pandas

Train Model
• Train feedforward neural 

network
• Save to disk model with lowest 

validation loss

Tools: scikit-learn, pyTorch

Test/Evaluate Model
• Generate future states by 

feeding current state + controls 
into the model and using model 
output to update state

• Compare predicted states to 
truth states (multi-step error)

• Compute instantaneous errors

Generating future states

Network
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Preliminary Results
• Tested pipeline with gazebo simulation data
• Ran MPPI and recorded the following data:

• Train dataset:
• 15 minutes
• Elliptical and CCRF tracks
• Clockwise and counterclockwise
• 5 m/s and 7 m/s target speed

• Test dataset:
• 2 minutes
• Elliptical track
• Clockwise and counterclockwise
• 6 m/s target speed

• Tested original AutoRally neural network as well 
as some deeper and wider networks

• Ran MPPI with trained model
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Preliminary Results

• Test results of a trained model with 
layers [6, 32, 32, 4]
• Plot shows multi-step prediction error
• Errors from propagating dynamics for 

38 different batches
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2D trajectory for batch 27



Preliminary Results
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Model name Network Layers Mean absolute multi-step errors

X position (m) Y position (m) Yaw (rad)

AutoRally_nnet
(benchmark)

6, 32, 32, 4 2.55 m 
(σ=2.15)

2.33 m 
(σ=1.66)

0.37 rad 
(σ=0.38)

Same-layers
(previous slide)

6, 32, 32, 4 2.94 m 
(σ=3.16)

2.98 m 
(σ=2.34)

0.93 rad 
(σ=0.69)

Wider-deeper 6, 64, 64, 64, 64, 4 1.99 m 
(σ=2.13)

1.62 m 
(σ=1.24)

0.57 rad 
(σ=0.55)



Vision system for truth state data

• Need truth data for robots running in the real world
• SSL (Small Size League) Vision can detect robots using overhead cameras

• Robots are detected via fiducial markers
• Global x and y coordinates, and robot orientation are computed

• SSL Vision state data can feed to an algorithm such as a Kalman filter to output 
tracking information (i.e. linear and angular velocity)
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Preliminary Results
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Difference from mean (mm for x,y, and rad for orientation)

Histogram of robot position measurements with mean centered at 0
Measurement count=1000



Still need to do

• Further quantify sensor noise
• Test vision system on small robot or find larger space
• Use ML pipeline to train model with real world vehicle data
• Modify AutoRally MPPI to be more flexible and configurable to handle 

a wider range of robots (e.g. omni-drive robots)
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Conclusion 

• Problem statement:
• AutoRally platform and MPPI officially only support AutoRally vehicle

• Accomplished so far:
• Built a scalable ML pipeline to generate a neural network dynamics model
• Trained on AutoRally gazebo simulation world to validate pipeline
• Configured an overhead vision system to collect real vehicle truth state data

• What still needs to be done:
• Test pipeline with real robot data!
• Remove coupling to AutoRally vehicle in MPPI and AutoRally platform
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Links to project files

• Forked AutoRally GitHub repository

•ML pipeline directory

• SSL Vision directory
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https://github.com/rdesc/autorally
https://github.com/rdesc/autorally/tree/rdesc-melodic-devel/autorally_control/src/path_integral/scripts/ml_pipeline
https://github.com/rdesc/autorally/tree/rdesc-melodic-devel/autorally_control/src/path_integral/scripts/ssl_vision

