Setting up a flexible framework to add MPPI

support for different dynamics models

Undergraduate Summer Student Final Presentation

Rodrigue de Schaetzen
August 171, 2020

Outline

»Problem statement

» Proposed Approach

» Related Work

» ML Pipeline

»Vision System

»What still needs to be done
» Conclusion

Problem Statement

* The AutoRally platform, an autonomous vehicle testbed for high-
speed aggressive driving, was designed with a single vehicle model in
mind

* No standard approach available to make AutoRally platform
compatible with other robots (e.g. wheelchair, jetracer)

* Focus is on the AutoRally control algorithm: MPPI

https://autorally.github.io/

Model Predictive Path Integral (MPPI)

* Novel approach for
autonomous vehicle control
1 iteration of sampling 2560, 2.5 second

* Based on stochastic sampling /\\ trajectories with cost-weighted average

of trajectories

* Can handle complex non-
linear dynamics and cost
functions

* Requires a model of the
system dynamics (i.e. what is
the vehicle’s future state if |
apply 50% throttle and 20%
steering)

MPPI description and screenshot taken from https://autorally.github.io/

https://autorally.github.io/

Proposed Approach

* Build a robust and scalable framework for generating models of
different vehicle dynamics in order to add MPPI support for additional
robots

1. ML pipeline for training a neural network dynamics model
2. Overhead vision system to collect ground truth data

* Already provided is the neural network dynamics model of the
AutoRally vehicle — this will serve as a benchmark

Related Work

* Approach is built off the ICRA 2017 paper “Information Theoretic
MPC for Model-Based Reinforcement Learning”

* Experiment used the AutoRally vehicle

* Used neural network with only 2 hidden layers each with 32 neurons and
Tanh non-linearities as the activation functions

* Trained on 30 minutes of human-controlled driving around an elliptical track
* Fused sensor data (GPS, IMU) to get truth pose estimates

* No publicly available code related to model training or testing

Neural Network Dynamics Model i

* Neural network architecture [6, 32, 32, 4] : J/

Input layer

Hidden Layers with
Tanh non-linearity

Output layer

d/dt(Longitudinal velocity)
d/dt(Lateral velocity)

Longitudinal velocity

Lateral velocity

Heading rate

(%]
Qv
©
o
c
AN
o™

Steering
Throttle

d/dt(Heading rate)

General form:
[layer 1, Tanh, ...,
layer n, Tanh]

General form:
d/dt (state variables)

General form:
[state variables,
control variables]

Generating future states

I\/l I_ | e | I n e control data
p p Test Dataset at T=t
state data d/dt (state data)
at T=0 at T=t

v

time step ++
state data
at T=t

* Built a highly configurable end-to-end ML pipeline

Train Model Test/Evaluate Model

Data Preprocessing
Resample state and control data e Train feedforward neural

Compute state derivative data network
Convert quaternions to Euler e Save to disk model with lowest
angles validation loss

* Generate future states by
feeding current state + controls
into the model and using model
output to update state
Compare predicted states to
truth states (multi-step error)

Tools: scipy, numpy, pandas Tools: scikit-learn, pyTorch
* Compute instantaneous errors

AR el LN JER A

Preliminary Results

* Tested pipeline with gazebo simulation data

 Ran MPPI and recorded the following data:

* Train dataset:
* 15 minutes
* Elliptical and CCRF tracks
* Clockwise and counterclockwise
* 5m/s and 7 m/s target speed
* Test dataset:
* 2 minutes
* Elliptical track
* Clockwise and counterclockwise
* 6 m/s target speed

Help
> 4 O | LN NERA

* Tested original AutoRally neural network as well
as some deeper and wider networks

e Ran MPPI with trained model

Mean absolute error (m)

Preliminary Results

14 A

—— X_pos
. . 1
-- time horizon !

12 A

10 A

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

Mean absolute error (m)

124

10 -

- Y_pOos

(o]e)

. . 1
-- time horizon !

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (s)

2D trajectory for batch 27

e Test results of a trained model with
layers [6, 32, 32, 4]

* Plot shows multi-step prediction error

* Errors from propagating dynamics for
38 different batches

Preliminary Results

Model name Network Layers

AutoRally nnet 6,32,32,4
(benchmark)

Same-layers 6,32,32,4
(previous slide)

Wider-deeper 6, 64, 64, 64, 64, 4

Mean absolute multi-step errors

X position (m)

2.55 m
(0=2.15)

2.94m
(0=3.16)

1.99 m
(0=2.13)

Y position (m)

2.33m
(0=1.66)

2.98 m
(0=2.34)

1.62 m
(0=1.24)

Yaw (rad)

0.37 rad
(0=0.38)

0.93 rad
(0=0.69)

0.57 rad
(0=0.55)

11

Vision system for truth state data

* Need truth data for robots running in the real world

e SSL (Small Size League) Vision can detect robots using overhead cameras
* Robots are detected via fiducial markers
* Global x and y coordinates, and robot orientation are computed

* SSL Vision state data can feed to an algorithm such as a Kalman filter to output
tracking information (i.e. linear and angular velocity)

Protobuf Message

Firewire VIS eiia £l with position data Algorithm e.g. Tracking data |
(SSL Vision) Kalman Filter

12

Robot

Preliminary Results

Histogram of robot position measurements with mean centered at 0
Measurement count=1000

orientation X y
250
250
200
200 1
200
150 A
150 1
150
100 |
100
100
50
50 50 4!
0- 0- 0
—0.002 —-0.001 0.000 0.001 0.002 0.003 -04 -03 -0.2 -0.1 00 01 02 0.3 -0.4 -0.2 0.0 0.2

Difference from mean (mm for x,y, and rad for orientation)

13

Still need to do

* Further quantify sensor noise
 Test vision system on small robot or find larger space
* Use ML pipeline to train model with real world vehicle data

* Modify AutoRally MPPI to be more flexible and configurable to handle
a wider range of robots (e.g. omni-drive robots)

Conclusion

* Problem statement:
* AutoRally platform and MPPI officially only support AutoRally vehicle

e Accomplished so far:
* Built a scalable ML pipeline to generate a neural network dynamics model
* Trained on AutoRally gazebo simulation world to validate pipeline
* Configured an overhead vision system to collect real vehicle truth state data

* What still needs to be done:
» Test pipeline with real robot data!
* Remove coupling to AutoRally vehicle in MPPI and AutoRally platform

Links to project files

* Forked AutoRally GitHub repository

* ML pipeline directory

e SSL Vision directory

16

https://github.com/rdesc/autorally
https://github.com/rdesc/autorally/tree/rdesc-melodic-devel/autorally_control/src/path_integral/scripts/ml_pipeline
https://github.com/rdesc/autorally/tree/rdesc-melodic-devel/autorally_control/src/path_integral/scripts/ssl_vision

