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Introduction and Motivation

Standard Model
(SM)

* Current understanding of the
fundamental particles and
their interactions

e Cannot answer many large
guestions e.g. what is Dark
Matter made of?

* Big search for extensions to
the SM



Long-lived particle search

* Long-lived particles (LLPs) occur in
many extensions to the SM e.g.
the Hidden Sector

* Theorized model:

* Two protons (p) collide to form a
heavy boson (Q)

* Boson decays to two long-lived
particles (s) which decay to two
fermion-antifermion pairs (f)

* Model serves as a benchmark for
searching paired LLPs
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Long-lived particle search

Vertex of displaced jet

Protons

ATLAS general purpose detector

>

* This search uses data from
ATLAS detector at the LHC

* Jets are bunches of particles
that can be clustered in a
single object

* Each LLP decaying to a
fermion-antifermion pair will
produce a displaced jet



Signhal jet

e Signature generated by
LLPs is the signal

e Characteristics of a
signal jet:
* No tracks
* Displaced jet
* High ratio of energy
deposited in the HCal to

energy deposited in the
ECal

I Signature of a signal jet I
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Background jets

Which particle signatures mimic signal?

* Background jet #1:
QCD multi jets are
decays to the SM from
proton-proton collisions

* Least probable to
resemble signal but
most abundant

* Cluster of neutrons
decaying to other
particles in the HCAL
mimics signal

I Signature of a common QCD multi jet

Introduction and Motivation



Background jets [rememms ) X

ATLAS

Which particle signatures mimic signal? \

U

* Background jet #2:
Beam-induced
background (BIB) is from
muons generated from
proton interactions
before the proton-
proton collision in ATLAS

N

* Muons travelling
parallel to beam pipe
could deposit energy in

calorimeters

Signature of a BIB jet I

Introduction and Motivation



Differentiating signal from background

* Need a multi-class classification model to classify jet as
either signal, QCD, or BIB

* Previous published analysis on the search for LLPs used
Boosted Decision Trees (BDT)

* Ongoing analysis uses Recurrent Neural Networks (RNN)
* Main goal of this project: improve classification model



Machine Learning



Machine Learning terminology

* Features are the variables

that describe an inEut e.f.

 Labels are the outputs the
model is trying to predict
e.g. Signal, QCD, BIB

* Predicted labels are
compared to true labels
during the training phase




Current model architecture

* Input to model is a jet with Track
up to 20 tracks, 30 (13 features) x 20

constituents, and 30 muon

segments Constituent
(12 features) x 30 - Output:
* Leverages Long Short-Term 822??';?5 Probability
’ jet is Signal,
Memory networ.ks (LSTM), Muon Segment DIAETEE | qcp, or BIB
capable of learning long- (6 features) x 30

term dependencies

* Good at making predictions | = : . |
based on ordered data e.g. BIEEITIES, xample output:

. . Signal = 80%,
time series QCD = 10%,
BIB = 10%

13

Inputs to model

Machine Learning



Metrics for model performance

* Accuracy

* Percentage of correctly
labeled jets

 ROC Area under curve (AUC)

e X-axis: Proportion of times
correctly tagged jet as signal

* Y-axis: 1 / FPR where false
positive rate (FPR) is the

proportion of jets tagged as
signal but were actually QCD

* BIB efficiency is the
proportion of true BIB jets
classified as BIB

* Higher AUC = better network

QCD Rejection
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* Extend idea below to 3 cuts i.e. signal, QCD, and BIB

ViSU e | |Z| N ROC AU C * Axes are slightly different than previous figure, but idea is
g the same
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* Extend idea below to 3 cuts i.e. signal, QCD, and BIB

. . * Axes are slightly different than previous figure, but idea is
Visualizing ROC AUC
the same
M true - false + | false - M true + AUC = 0.853
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* Extend idea below to 3 cuts i.e. signal, QCD, and BIB
. - * Axes are slightly different than previous figure, but idea is
Visualizing ROC AUC sy P ;

the same
I true - false + false - M true + AUC =0.853
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Comparing model performances

e K-Fold Cross Validation:

P : Validation Training
Statistical technique o o
used to evaluate . B
performance of model st — Performance;
 Results in a less biased S ong — » Performance,,
or less optimistic <
estimate of the model e S > Performances |- Performance
: = =1 rforman
skill than other methods S  p Performance, | =¥ & Ferformance
>
5th — Performance g

. . 18
Machine Learning



Study #1

Does the ordering of transverse momentum matter?

19



Changing the order of transverse momentum

* Transverse momentum (py)
is the momentum of a
particle in the transverse
plane

e Current ordering of ,
and SIS i by
descending py

* This study will compare

performance of inputs with
different ordering of p-
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* Ascending and descending order perform better than
random

K-Fold results

* Can conclude pris a good ordering for jet constituents and
jet tracks

—— Maximum 0.84 - 0.9325 A A

0.83 0.9300 - |
75t percentile
0.82 - T 0.9275 - ‘
()
c
=)
3 > 0.9250 1
Median g 081 &
© =}
5 S 0.9225 1
© 0.80 A <
< 1

th : ]
25t percentile 0.79 - 0.9200 l
0.9175 -
0.78 -
___ Minimum i %
0.9150 -
0.77 -

ascending random descending ascending random descending
pT ordering (default) pT ordering
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Study #2

Modifying architecture to improve model performance

22



1D Convolutions

Input Matrix = filter
. o o &
* Add 1D convolutional layers ~ S 3
between inputs [1¢1e ¢ & &g Rutout
, muon segmentlgle Y #1— |02 | 04 | -03 0.11
LSTM layers 42— |01 | 02 | 06 03
e Additional 1D convolutional LR #3— | 0.1 | 04 | -0.1
layers act as feature extraction W #4— | 0.7 | 0.5 | 0.4
and compression Tl #5— | 01 | -02 | 0.1
ek #6— | 0.6 | -0.3 | 0.8

1D filter sliding down matrix

23
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1D Convolutions

Input Matrix = filter
. o o &
* Add 1D convolutional layers ~ S 3
between inputs 1 1¢ & & & S
, muon segmentlyle [ #1— |02 | 04 |-03 0.11
LSTM layers 42— |01 | 02 | 06 0.3
e Additional 1D convolutional R 43— [-0.1 | 0.4 | -0 0.2
layers act as feature extraction LG #4— | 0.7 | 0.5 | 0.4
and compression Tl #5— | 0.1 | -0.2 | 0.1
Ui #6— | 06 | -03 | 0.8

1D filter sliding down matrix
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Modifying the current architecture

Track I ConvlD I

(13 features) x 20 Filters: 64/32/32/8
Constituent ConvlD
12 features) x 30 ' : .
( ) Filters: 64/32/32/8 Concatenate, Output:
Probability
Dense, and .
jet is Signal,
Muon Segment ConvlD Dropout layers QcD, or BIB

(6 features) x 30 Filters: 32/16/4

Jet
(3 features)

800 inputs - 520 highly discriminating
Inputs to model features fed into the LSTMs

Study #2



* New architecture (convlD_Istm) performed better in both

K-Fold results Metrics

0.84 A

— Maximum T —
0.82 0.935
. [ ] v
75th percentile 0.80 1 l 0.930 - =
o ©
2 0.78 =
3 0.925 ——
. 5 o =
Median 2 0.76 1 < 2
5 S 0.920 o
© <
2 0.74 o
< |
25% percentile 0.72 1 =
0.910 - =
0.70 - ' @
L Minimum 068 | "‘ 0.905 -
convlD_Istm Istm T T
(new) Model architecture (old) convlD_Istm Istm

Model architecture
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Study #3

Grid search to optimize hyperparameters on new model architecture
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Some model metric we are

G r| d Sea 'C h interested in optimizing

* Technique for optimizing model
hyperparameters

—

* Decide on search space and then

generate a model for each
combination of parameters

* Example: Two parameters each
with 3 possible values so 3x3 =9
possible model configurations

Parameter #2 (P2)

P2,, P1, P24, P1, P24, P1;

P2,, P1, P2,, P1, P2,, P1,

P25, P1, P2;, P1, P25, P1,4

Parameter #1 (P1)

‘ =1 of 9 possible model configurations

Study #3
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Grid Search

e Search space: 5 values of
learning rate, 4 values of
regularization, and 3 values for
number of nodes in final
Convl1D layer

* 5x4x3 = 60 unique models

Study #3

loss

loss

Small learning rate

Global loss
minimum

: /

w’ w

Large learning rate

\v

w’ W
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Grid Search results

0.94 A

After grid

o
©
o

Average ROC AUC
o
oo
[00]

Better model

Before grid
search

search

0.92 A

0.86 -

Architecture:
convlD_Istm

0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 0.00040

Learning rate

Study #3

e Positive correlation
found between learning
rate and model
performance

e 12 different models
were trained for each
learning rate

* Reached optimum value
since curve is plateauing
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Conclusions and Discussions

e Conclusion of results:
* prordering is important
 ConvlD + LSTM outperforms old architecture
* Bigger learning rate significantly improved model performance
* Hopeful results will be used in the overall ATLAS analysis!

* To explore further:

* Are there other metrics than accuracy or AUC to better quantify model
performance?
» Signal efficiency at specific QCD rejection
» S/sqrt(Background), S = # of signal events and Background = # of background events
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Important Variables

* Pseudorapidity (n) - angle of the
particle in relation to the axis of

o Displaced Jet the detector cylinder
L A V«f) * Angle (®) - Angle of a particle in
the transverse plane

4\

¢ e Transverse momentum (p;) -
Momentum of a particle in the
transverse plane

> N =X « AR - Width of jet

\/ AR = /(A0 + (An)°

Theory 34




Particle signatures

Tracking

FPhoton
oto s!

Electrons

Positrons

n
Muons i

Charged

hadrons

Neutral

hadrons >

Neutrinos

Innermost layer

Electromagnetic
calorimeter

Hadronic
calorimeter

Muon detector

» QOutermost layer
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Features

Constituent:

pt
eta
phi
|1hcal
|1ecal
|2hcal
|2ecal
I3hcal
|3ecal
|4hcal
|3ecal
time

Track:

pt
eta

phi
Vertex_nParticles
DO

Z0
chiSquared
PixelShared
SCTShared
SCTHoles
SCTHoles
PixelHits
SCTHits

Muon Segment:

etaPos
phiPos
etaDir
phiDir
chiSquared
t0

Jet:

° pt
* eta
e phi



1D vs. 2D Convolution

Feature detector

LI [ 1T 1 [ 1T 1T J
Height - Start position |

LI _JL _JL _JL |

love

one

H HNN
H RN

dimensional

convolutional

neural

HiN
i
{ 1 | |

networks

E\l_|l_|[_|l_|

L J J_Jr |

very

D Final position
\

J

much

Encoded representation of word

Methods

Width {

Height EAtUIE UELECLO

L)

> Y position

~
X position
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Accuracy

Plots for best model foun

Model accuracy
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K-Fold results

Model Comparison with ROC AUC metric

0.84
1

0.82 -

0.80 -

0.78 A

0.76 A

Area under curve

0.74 A

0.72 A T

0.70 A

R —

0.68 -

T T

T
convlD Istm Istm convlD
Model architecture



New architecture

3 layers of ConvlD added for MSeg

input: | (None, 30, 12) input: | (None, 20, 13)
constit_input: InputLayer track_input: InputLayer
output: | (None, 30, 12) output: | (None, 20, 13)
|
v 1
input: | (None, 30, 12) input: | (None, 20, 13) . input: | (None, 30, 6)
convld_33: ConvlD convld_36: ConviD MSeg_input: InputLayer
output: | (None, 30, 64) output: | (None, 20, 64) output: | (None, 30, 6)
input: | (None, 30, 64) input: | (None, 20, 64) ' input: | (None, 30, 6) ‘
convld_34: ConviD convld_37: ConviD convld_39: ConvlD
output: | (None, 30, 32) output: | (None, 20, 32) output: | (None, 30, 32)
input: | (None, 30, 32) input: | (None, 20, 32) input: | (None, 30, 32)
convld_35: ConviD convld_38: ConviD convld_40: ConviD
output: | (None, 30, 32) output: | (None, 20, 32) output: | (None, 30, 16)
input: | (None, 30, 32) input: | (None, 20, 32) input: | (None, 30, 16)
constit_final_convld: ConvlD track_final_conv1d: ConvlD MSeg_final_convld: ConvlD
output: [ (None, 30, 8) output: | (None, 20, 8) output: [ (None, 30, 4)
| | | )
11 1 ]
input: | (None, 30, 8) input: | (None, 20, 8) input: | (None, 30, 4) input: | (None, 3)
cu_dnnlstm_13: CuDNNLSTM cu_dnnlstm_14: CuDNNLSTM cu_dnnlstm_15: CuDNNLSTM jet_input: InputLayer
output: (None, 60) output: (None, 60) output: (None, 25) output: | (None, 3)
input: | (None, 60) input: | (None, 60) input: | [(None, 60), (None, 60), (None, 25), (None, 3)] input: | (None, 25) input: | (None, 3)
constit_output: Dense track_output: Dense concatenate_5: Concatenate MSeg_output: Dense dense_13: Dense
output: [ (None, 3) output: | (None, 3) output: (None, 148) output: | (None, 3) output: | (None, 3)
input: (None, 148) . input: | (None, 3)
. dense_14: Dense jet_output: Dense
ayers of ConvlD added for consit and trac st | None, 1020 | one.
input: | (None, 1024)
dropout_9: Dropout
output: | (None, 1024)
input: | (None, 1024)
dense_15: Dense
output: | (None, 128)
input: | (None, 128)
dropout_10: Dropout .
same as the old architecture
. input: | (None, 128)
main_output: Dense
output: (None, 3)




learning_rate

regularization

:nn_final_layer_constit

cnn_final_layer_track

cnn_final_layer_MSeg

roc_score

acc_score

Positive correlation (0.8) between
model performance and learning
rate

Negative correlation
(-0.14) but minimal
so will ignore
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Grid Search results

0.92 A

o
©
o

Average ROC AUC
o
oo
oo

0.86 -

0.84 A

0.002 0.004 0.006 0.008 0.010
Regularization




