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Standard Model 
(SM)

• Current understanding of the 
fundamental particles and 
their interactions
• Cannot answer many large 

questions e.g. what is Dark 
Matter made of?
• Big search for extensions to 

the SM

Confirmed in 2012!
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Long-lived particle search

• Long-lived particles (LLPs) occur in 
many extensions to the SM e.g. 
the Hidden Sector
• Theorized model:

• Two protons (p) collide to form a 
heavy boson (Φ)
• Boson decays to two long-lived 

particles (s) which decay to two 
fermion-antifermion pairs (f)
• Model serves as a benchmark for 

searching paired LLPs
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Interaction point (IP)

Not interacting with SM

Interacting with SM

Invisible to detector!
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Long-lived particle search

• This search uses data from 
ATLAS detector at the LHC
• Jets are bunches of particles 

that can be clustered in a 
single object
• Each LLP decaying to a 

fermion-antifermion pair will 
produce a displaced jet
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Protons Protons

Vertex of displaced jet

ATLAS general purpose detector 
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Signal jet

• Signature generated by 
LLPs is the signal
• Characteristics of a 

signal jet:
• No tracks
• Displaced jet
• High ratio of energy 

deposited in the HCal to 
energy deposited in the 
ECal
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Signature of a signal jet

ATLAS
layers

Introduction and Motivation



Background jets
Which particle signatures mimic signal?

• Background jet #1:   
QCD multi jets are 
decays to the SM from 
proton-proton collisions
• Least probable to 

resemble signal but 
most abundant
• Cluster of neutrons 

decaying to other 
particles in the HCAL 
mimics signal
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Signature of a common QCD multi jet

ATLAS
layers

Introduction and Motivation



Background jets
Which particle signatures mimic signal?

• Background jet #2:   
Beam-induced 
background (BIB) is from 
muons generated from 
proton interactions 
before the proton-
proton collision in ATLAS
• Muons travelling 

parallel to beam pipe 
could deposit energy in 
calorimeters
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Signature of a BIB jet

Muons direction of travel

ATLAS

ATLAS
layers
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Differentiating signal from background 

• Need a multi-class classification model to classify jet as 
either signal, QCD, or BIB
• Previous published analysis on the search for LLPs used 

Boosted Decision Trees (BDT)
• Ongoing analysis uses Recurrent Neural Networks (RNN)
•Main goal of this project: improve classification model
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Machine Learning
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Machine Learning terminology
• Features are the variables 

that describe an input e.g. 
track, constituent, muon 
segment
• Labels are the outputs the 

model is trying to predict 
e.g. Signal, QCD, BIB
• Predicted labels are 

compared to true labels 
during the training phase
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Track Muon SegmentConstituent

ATLAS
layers
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Current model architecture

• Input to model is a jet with 
up to 20 tracks, 30 
constituents, and 30 muon 
segments
• Leverages Long Short-Term 

Memory networks (LSTM), 
capable of learning long-
term dependencies
• Good at making predictions 

based on ordered data e.g. 
time series
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Inputs to model

LSTM
Track
(13 features) x 20

Muon Segment
(6 features) x 30

Jet
(3 features)

LSTM

LSTM

Constituent
(12 features) x 30

Concatenate, 
Dense, and 

Dropout layers 

Output:
Probability 
jet is Signal, 
QCD, or BIB

Example output:
Signal = 80%, 
QCD = 10%,
BIB = 10%
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Metrics for model performance
• Accuracy
• Percentage of correctly 

labeled jets
• ROC Area under curve (AUC)
• X-axis: Proportion of times 

correctly tagged jet as signal
• Y-axis: 1 / FPR where false 

positive rate (FPR) is the 
proportion of jets tagged as 
signal but were actually QCD
• BIB efficiency is the 

proportion of true BIB jets 
classified as BIB
• Higher AUC = better network
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Visualizing ROC AUC
• Extend idea below to 3 cuts i.e. signal, QCD, and BIB

• Axes are slightly different than previous figure, but idea is 
the same 
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Comparing model performances

• K-Fold Cross Validation: 
Statistical technique 
used to evaluate 
performance of model
• Results in a less biased 

or less optimistic 
estimate of the model 
skill than other methods
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Study #1
Does the ordering of transverse momentum matter?
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Changing the order of transverse momentum

• Transverse momentum (pT) 
is the momentum of a 
particle in the transverse 
plane
• Current ordering of tracks, 

and constituents is by 
descending pT

• This study will compare 
performance of inputs with 
different ordering of pT
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K-Fold results
• Ascending and descending order perform better than 

random

• Can conclude pT is a good ordering for jet constituents and 
jet tracks
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Study #2
Modifying architecture to improve model performance
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1D Convolutions

• Add 1D convolutional layers 
between inputs track, 
constituent, muon segment and 
LSTM layers
• Additional 1D convolutional 

layers act as feature extraction 
and compression
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Modifying the current architecture

Conv1D
Filters: 64/32/32/8

800 inputs → 520 highly discriminating 
features fed into the LSTMs

Conv1D 
Filters: 64/32/32/8

Conv1D 
Filters: 32/16/4

Inputs to model

LSTMTrack
(13 features) x 20

Muon Segment
(6 features) x 30

Jet
(3 features)

LSTM

LSTM

Constituent
(12 features) x 30

Concatenate, 
Dense, and 

Dropout layers 

Study #2

Output:
Probability 
jet is Signal, 
QCD, or BIB



K-Fold results • New architecture (conv1D_lstm) performed better in both 
metrics
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Study #3
Grid search to optimize hyperparameters on new model architecture
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Grid Search

• Technique for optimizing model 
hyperparameters
• Decide on search space and then 

generate a model for each 
combination of parameters
• Example: Two parameters each 

with 3 possible values so 3x3 = 9 
possible model configurations
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Some model metric we are 
interested in optimizing

= 1 of 9 possible model configurations
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Grid Search

• Search space: 5 values of 
learning rate, 4 values of 
regularization, and 3 values for 
number of nodes in final 
Conv1D layer
• 5x4x3 = 60 unique models
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Grid Search results
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• Positive correlation 
found between learning 
rate and model 
performance
• 12 different models 

were trained for each 
learning rate
• Reached optimum value 

since curve is plateauing
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Before grid 
search

After grid 
search

Architecture: 
conv1D_lstm
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Conclusions and Discussions

• Conclusion of results:
• pT ordering is important
• Conv1D + LSTM outperforms old architecture
• Bigger learning rate significantly improved model performance
• Hopeful results will be used in the overall ATLAS analysis!

• To explore further:
• Are there other metrics than accuracy or AUC to better quantify model 

performance?
• Signal efficiency at specific QCD rejection
• S/sqrt(Background), S = # of signal events and Background = # of background events 
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Important Variables

Theory 34

• Pseudorapidity (η) - angle of the 
particle in relation to the axis of 
the detector cylinder
• Angle (Φ) - Angle of a particle in 

the transverse plane 
• Transverse momentum (pT) -

Momentum of a particle in the 
transverse plane
• ΔR - Width of jet



Particle signatures

35



Features
Constituent:

• pt
• eta
• phi
• l1hcal
• l1ecal
• l2hcal
• l2ecal
• l3hcal
• l3ecal
• l4hcal
• l3ecal
• time
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Track:
• pt
• eta
• phi
• Vertex_nParticles
• D0
• Z0
• chiSquared
• PixelShared
• SCTShared
• SCTHoles
• SCTHoles
• PixelHits
• SCTHits

Muon Segment:
• etaPos
• phiPos
• etaDir
• phiDir
• chiSquared
• t0

Jet:
• pt
• eta
• phi



1D vs. 2D Convolution
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Plots for best model found
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K-Fold results
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New architecture

4 layers of Conv1D added for consit and track

3 layers of Conv1D added for MSeg

All layers outside red box are the 
same as the old architecture
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Grid Search results
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Positive correlation (0.8) between 
model performance and learning 
rate

Negative correlation 
(-0.14) but minimal 
so will ignore



Grid Search results

42


